Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10740, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729987

RESUMEN

Klotho regulates many pathways in the aging process, but it remains unclear how it is physiologically regulated. Because Klotho is synthesized, cleaved, and released from the kidney; activates the chief urinary K+ secretion channel (ROMK) and stimulates urinary K+ secretion, we explored if Klotho protein is regulated by dietary K+ and the potassium-regulatory hormone, Aldosterone. Klotho protein along the nephron was evaluated in humans and in wild-type (WT) mice; and in mice lacking components of Aldosterone signaling, including the Aldosterone-Synthase KO (AS-KO) and the Mineralocorticoid-Receptor KO (MR-KO) mice. We found the specific cells of the distal nephron in humans and mice that are chief sites of regulated K+ secretion have the highest Klotho protein expression along the nephron. WT mice fed K+-rich diets increased Klotho expression in these cells. AS-KO mice exhibit normal Klotho under basal conditions but could not upregulate Klotho in response to high-K+ intake in the K+-secreting cells. Similarly, MR-KO mice exhibit decreased Klotho protein expression. Together, i) Klotho is highly expressed in the key sites of regulated K+ secretion in humans and mice, ii) In mice, K+-rich diets increase Klotho expression specifically in the potassium secretory cells of the distal nephron, iii) Aldosterone signaling is required for Klotho response to high K+ intake.


Asunto(s)
Aldosterona , Glucuronidasa , Proteínas Klotho , Ratones Noqueados , Potasio , Proteínas Klotho/metabolismo , Animales , Humanos , Ratones , Potasio/metabolismo , Aldosterona/metabolismo , Glucuronidasa/metabolismo , Glucuronidasa/genética , Masculino , Nefronas/metabolismo , Potasio en la Dieta/metabolismo , Potasio en la Dieta/administración & dosificación , Femenino , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Ratones Endogámicos C57BL
2.
J Am Soc Nephrol ; 35(4): 426-440, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38238903

RESUMEN

SIGNIFICANCE STATEMENT: High-resolution single-nucleus RNA-sequencing data indicate a clear separation between primary sites of calcium and magnesium handling within distal convoluted tubule (DCT). Both DCT1 and DCT2 express Slc12a3, but these subsegments serve distinctive functions, with more abundant magnesium-handling genes along DCT1 and more calcium-handling genes along DCT2. The data also provide insight into the plasticity of the distal nephron-collecting duct junction, formed from cells of separate embryonic origins. By focusing/changing gradients of gene expression, the DCT can morph into different physiological cell states on demand. BACKGROUND: The distal convoluted tubule (DCT) comprises two subsegments, DCT1 and DCT2, with different functional and molecular characteristics. The functional and molecular distinction between these segments, however, has been controversial. METHODS: To understand the heterogeneity within the DCT population with better clarity, we enriched for DCT nuclei by using a mouse line combining "Isolation of Nuclei Tagged in specific Cell Types" and sodium chloride cotransporter-driven inducible Cre recombinase. We sorted the fluorescently labeled DCT nuclei using Fluorescence-Activated Nucleus Sorting and performed single-nucleus transcriptomics. RESULTS: Among 25,183 DCT cells, 75% were from DCT1 and 25% were from DCT2. In addition, there was a small population (<1%) enriched in proliferation-related genes, such as Top2a , Cenpp , and Mki67 . Although both DCT1 and DCT2 expressed sodium chloride cotransporter, magnesium transport genes were predominantly expressed along DCT1, whereas calcium, electrogenic sodium, and potassium transport genes were more abundant along DCT2. The transition between these two segments was gradual, with a transitional zone in which DCT1 and DCT2 cells were interspersed. The expression of the homeobox genes by DCT cells suggests that they develop along different trajectories. CONCLUSIONS: Transcriptomic analysis of an enriched rare cell population using a genetically targeted approach clarifies the function and classification of distal cells. The DCT segment is short, can be separated into two subsegments that serve distinct functions, and is speculated to derive from different origins during development.


Asunto(s)
Calcio , Magnesio , Calcio/metabolismo , Magnesio/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Transporte Iónico , ARN/análisis , Túbulos Renales Distales/metabolismo
3.
Hypertension ; 81(1): 126-137, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37909221

RESUMEN

BACKGROUND: Kir4.2 and Kir4.1 play a role in regulating membrane transport in the proximal tubule (PT) and in the distal-convoluted-tubule (DCT), respectively. METHODS: We generated kidney-tubule-specific-AT1aR-knockout (Ks-AT1aR-KO) mice to examine whether renal AT1aR regulates Kir4.2 and Kir4.1. RESULTS: Ks-AT1aR-KO mice had a lower systolic blood pressure than Agtr1aflox/flox (control) mice. Ks-AT1aR-KO mice had a lower expression of NHE3 (Na+/H+-exchanger 3) and Kir4.2, a major Kir-channel in PT, than Agtr1aflox/flox mice. Whole-cell recording also demonstrated that the membrane potential in PT of Ks-AT1aR-KO mice was lesser negative than Agtr1aflox/flox mice. The expression of Kir4.1 and Kir5.1, Kir4.1/Kir5.1-mediated K+ currents of DCT and DCT membrane potential in Ks-AT1aR-KO mice, were similar to Agtr1aflox/flox mice. However, angiotensin II perfusion for 7 days hyperpolarized the membrane potential in PT and DCT of the control mice but not in Ks-AT1aR-KO mice, while angiotensin II perfusion did not change the expression of Kir4.1, Kir4.2, and Kir5.1. Deletion of AT1aR did not significantly affect the expression of αENaC (epithelial Na+ channel) and ßENaC but increased cleaved γENaC expression. Patch-clamp experiments demonstrated that deletion of AT1aR increased amiloride-sensitive Na+-currents in the cortical-collecting duct but not in late-DCT. However, tertiapin-Q sensitive renal outer medullary potassium channel currents were similar in both genotypes. CONCLUSIONS: AT1aR determines the baseline membrane potential of PT by controlling Kir4.2 expression/activity but AT1aR is not required for determining the baseline membrane potential of the DCT and Kir4.1/Kir5.1 activity/expression. However, AT1aR is required for angiotensin II-induced hyperpolarization of basolateral membrane of PT and DCT. Deletion of AT1aR had no effect on baseline renal outer medullary potassium channel activity but increased ENaC activity in the CCD.


Asunto(s)
Canales de Potasio de Rectificación Interna , Receptor de Angiotensina Tipo 1 , Animales , Ratones , Angiotensina II/farmacología , Angiotensina II/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales Distales/metabolismo , Ratones Noqueados , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Sodio/metabolismo , Canales Epiteliales de Sodio
4.
Am J Physiol Renal Physiol ; 326(1): F39-F56, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881876

RESUMEN

The with-no-lysine kinase 4 (WNK4)-sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway mediates activating phosphorylation of the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the thiazide-sensitive NaCl cotransporter (NCC). The commonly used pT96/pT101-pNKCC2 antibody cross-reacts with pT53-NCC in mice on the C57BL/6 background due to a five amino acid deletion. We generated a new C57BL/6-specific pNKCC2 antibody (anti-pT96-NKCC2) and tested the hypothesis that the WNK4-SPAK/OSR1 pathway strongly regulates the phosphorylation of NCC but not NKCC2. In C57BL/6 mice, anti-pT96-NKCC2 detected pNKCC2 and did not cross-react with NCC. Abundances of pT96-NKCC2 and pT53-NCC were evaluated in Wnk4-/-, Osr1-/-, Spak-/-, and Osr1-/-/Spak-/- mice and in several models of the disease familial hyperkalemic hypertension (FHHt) in which the CUL3-KLHL3 ubiquitin ligase complex that promotes WNK4 degradation is dysregulated (Cul3+/-/Δ9, Klhl3-/-, and Klhl3R528H/R528H). All mice were on the C57BL/6 background. In Wnk4-/- mice, pT53-NCC was almost absent but pT96-NKCC2 was only slightly lower. pT53-NCC was almost absent in Spak-/- and Osr1-/-/Spak-/- mice, but pT96-NKCC2 abundance did not differ from controls. pT96-NKCC2/total NKCC2 was slightly lower in Osr1-/- and Osr1-/-/Spak-/- mice. WNK4 expression colocalized not only with NCC but also with NKCC2 in Klhl3-/- mice, but pT96-NKCC2 abundance was unchanged. Consistent with this, furosemide-induced urinary Na+ excretion following thiazide treatment was similar between Klhl3-/- and controls. pT96-NKCC2 abundance was also unchanged in the other FHHt mouse models. Our data show that disruption of the WNK4-SPAK/OSR1 pathway only mildly affects NKCC2 phosphorylation, suggesting a role for other kinases in NKCC2 activation. In FHHt models NKCC2 phosphorylation is unchanged despite higher WNK4 abundance, explaining the thiazide sensitivity of FHHt.NEW & NOTEWORTHY The renal cation cotransporters NCC and NKCC2 are activated following phosphorylation mediated by the WNK4-SPAK/OSR1 pathway. While disruption of this pathway strongly affects NCC activity, effects on NKCC2 activity are unclear since the commonly used phospho-NKCC2 antibody was recently reported to cross-react with phospho-NCC in mice on the C57BL/6 background. Using a new phospho-NKCC2 antibody specific for C57BL/6, we show that inhibition or activation of the WNK4-SPAK/OSR1 pathway in mice only mildly affects NKCC2 phosphorylation.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Seudohipoaldosteronismo , Animales , Ratones , Furosemida , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Tiazidas
5.
Sci Total Environ ; 904: 166305, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586541

RESUMEN

As antimony (Sb) has been increasingly used in manufacturing industries (e.g., alloy, polymer and electronics industries), Sb contamination in the soil environment becomes widely reported and has drawn growing attention due to the toxicity of Sb to living organisms. Whether soil-dwelling organisms can tolerate Sb toxicity and maintain their ecological functions remains poorly understood. Using a cosmopolitan, ecologically important earthworm species (Eisenia fetida) as an ideal model organism, we examine the effects of Sb on the physiological, molecular and behavioural responses of earthworms to different levels of Sb contamination in soil (0, 10, 50, 100, 250 and 500 mg/kg). We found that earthworms could tolerate heavy Sb contamination (100 mg/kg) by boosting their antioxidant defence (POD and GST) and immune systems (ACP) so that their body weight and survival rate were sustained (c.f. control). However, these systems were compromised under extreme Sb contamination (500 mg/kg), leading to mortality. As such, earthworms exhibited avoidance behaviour to escape from the Sb-contaminated soil, implying the loss of their ecological contributions to the environment (e.g., increase in soil aeration and maintenance of soil structure). By measuring various types of biomarkers along a concentration gradient, this study provides a mechanistic understanding of how earthworms resist or succumb to Sb toxicity. Since extreme Sb contamination in soil (>100 mg/kg) is rarely found in nature, we are optimistic that the health and performance of earthworms are not influenced by Sb in most circumstances, but regular monitoring of Sb in soil is recommended to ensure the integrity and functioning of soil environment. Further studies are recommended to evaluate the long-term impact of Sb in the soil ecosystem through bioaccumulation and trophic transfer among soil-dwelling organisms.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Suelo/química , Oligoquetos/fisiología , Antimonio/toxicidad , Antimonio/análisis , Ecosistema , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
6.
Phytother Res ; 37(10): 4488-4503, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37314083

RESUMEN

Obesity is caused by an imbalance between energy intake and energy expenditure. This study aimed to determine the effects and mechanisms of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) on exercise tolerance in high-fat diet (HFD)-fed mice. Male C57BL/6J mice were randomly divided into two categories (7 groups [n = 8]): sedentary (control [CON], HFD, 200 mg/kg DMC, and 500 mg/kg DMC) and swimming (HFD, 200 mg/kg DMC, and 500 mg/kg DMC). Except the CON group, all other groups were fed HFD with or without DMC intervention for 33 days. The swimming groups were subjected to exhaustive swimming (three sessions/week). Changes in swimming time, glucolipid metabolism, body composition, biochemical indicators, histopathology, inflammation, metabolic mediators, and protein expression were assessed. DMC combined with regular exercise improved endurance performance, body composition, glucose and insulin tolerance, lipid profile, and the inflammatory state in a dose-dependent manner. Further, DMC alone or combined with exercise could restore normal tissue morphology, reduce fatigue-associated markers, and boost whole-body metabolism and the protein expression of phospho-AMP-activated protein kinase alpha/total-AMP-activated protein kinase alpha (AMPK), sirtuin-1 (SIRT1), peroxisome-proliferator-activated receptor gamma coactivator 1alpha (PGC-1α), and peroxisome proliferator-activated receptor alpha in the muscle and adipose tissues of HFD-fed mice. DMC exhibits antifatigue effects by regulating glucolipid catabolism, inflammation, and energy homeostasis. Furthermore, DMC exerts a synergistic exercise-related metabolic effect via the AMPK-SIRT1-PGC-1α signaling pathway, suggesting that DMC is a potential natural sports supplement with mimicked or augmented exercise effects for obesity prevention.

7.
PLoS Pathog ; 19(4): e1011251, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37011084

RESUMEN

Magnaporthe oryzae causes rice blasts posing serious threats to food security worldwide. During infection, M. oryzae utilizes several transmembrane receptor proteins that sense cell surface cues to induce highly specialized infectious structures called appressoria. However, little is known about the mechanisms of intracellular receptor tracking and their function. Here, we described that disrupting the coat protein complex II (COPII) cargo protein MoErv14 severely affects appressorium formation and pathogenicity as the ΔMoerv14 mutant is defective not only in cAMP production but also in the phosphorylation of the mitogen-activated protein kinase (MAPK) MoPmk1. Studies also showed that either externally supplementing cAMP or maintaining MoPmk1 phosphorylation suppresses the observed defects in the ΔMoerv14 strain. Importantly, MoErv14 is found to regulate the transport of MoPth11, a membrane receptor functioning upstream of G-protein/cAMP signaling, and MoWish and MoSho1 function upstream of the Pmk1-MAPK pathway. In summary, our studies elucidate the mechanism by which the COPII protein MoErv14 plays an important function in regulating the transport of receptors involved in the appressorium formation and virulence of the blast fungus.


Asunto(s)
Magnaporthe , Oryza , Virulencia , Magnaporthe/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo
8.
Am J Physiol Renal Physiol ; 323(1): F4-F19, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35532068

RESUMEN

Cullin-RING ligases are a family of E3 ubiquitin ligases that control cellular processes through regulated degradation. Cullin 3 targets with-no-lysine kinase 4 (WNK4), a kinase that activates the Na+-Cl- cotransporter (NCC), the main pathway for Na+ reabsorption in the distal convoluted tubule (DCT). Mutations in the cullin 3 gene lead to familial hyperkalemic hypertension by increasing WNK4 abundance. The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) regulates the activity of cullin-RING ligases by removing the ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8. Genetic deletion of the catalytically active CSN subunit, Jab1, along the nephron in mice (KS-Jab1-/-) led to increased WNK4 abundance; however, NCC abundance was substantially reduced. We hypothesized that the reduction in NCC resulted from a cortical injury that led to hypoplasia of the segment, which counteracted WNK4 activation of NCC. To test this, we studied KS-Jab1-/- mice at weekly intervals over a period of 3 wk. The results showed that NCC abundance was unchanged until 3 wk after Jab1 deletion, at which time other DCT-specific proteins were also reduced. The kidney injury markers kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin demonstrated kidney injury immediately after Jab1 deletion; however, the damage was initially limited to the medulla. The injury progressed and expanded into the cortex 3 wk after Jab1 deletion coinciding with loss of the DCT. The data indicate that nephron-specific disruption of the cullin-RING ligase system results in a complex progression of tubule injury that leads to hypoplasia of the DCT.NEW & NOTEWORTHY Cullin 3 (CUL3) targets with-no-lysine-kinase 4 (WNK4), which activates Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney. Renal-specific genetic deletion of the constitutive photomorphogenesis 9 signalosome, an upstream regulator of CUL3, resulted in a reduction of NCC due to DCT hypoplasia, which coincided with cortical kidney injury. The data indicate that nephron-specific disruption of the cullin-RING ligase system results in a complex progression of tubule injury leading to hypoplasia of the DCT.


Asunto(s)
Proteínas Cullin , Proteínas Serina-Treonina Quinasas , Animales , Complejo del Señalosoma COP9/genética , Complejo del Señalosoma COP9/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Túbulos Renales Distales/metabolismo , Ratones , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo
9.
Hypertension ; 79(7): 1423-1434, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35506380

RESUMEN

BACKGROUND: MR (mineralocorticoid receptor) antagonists are recommended for patients with resistant hypertension even when circulating aldosterone levels are not high. Although aldosterone activates MR to increase epithelial sodium channel (ENaC) activity, glucocorticoids also activate MR but are metabolized by 11ßHSD2 (11ß-hydroxysteroid dehydrogenase type 2). 11ßHSD2 is expressed at increasing levels from distal convoluted tubule (DCT) through collecting duct. Here, we hypothesized that MR maintains ENaC activity in the DCT2 and early connecting tubule in the absence of aldosterone. METHODS: We studied AS (aldosterone synthase)-deficient (AS-/-) mice, which were backcrossed onto the same C57BL6/J strain as kidney-specific MR knockout (KS-MR-/-) mice. KS-MR-/- mice were used to compare MR expression and ENaC localization and cleavage with AS-/- mice. RESULTS: MR was highly expressed along DCT2 through the cortical collecting duct (CCD), whereas no 11ßHSD2 expression was observed along DCT2. MR signal and apical ENaC localization were clearly reduced along both DCT2 and CCD in KS-MR-/- mice but were fully preserved along DCT2 and were partially reduced along CCD in AS-/- mice. Apical ENaC localization and ENaC currents were fully preserved along DCT2 in AS-/- mice and were not increased along CCD after low salt. AS-/- mice exhibited transient Na+ wasting under low-salt diet, but administration of the MR antagonist eplerenone to AS-/- mice led to hyperkalemia and decreased body weight with higher Na+ excretion, mimicking the phenotype of MR-/- mice. CONCLUSIONS: Our results provide evidence that MR is activated in the absence of aldosterone along DCT2 and partially CCD, suggesting glucocorticoid binding to MR preserves sodium homeostasis along DCT2 in AS-/- mice.


Asunto(s)
Aldosterona , Túbulos Renales Colectores , Aldosterona/metabolismo , Aldosterona/farmacología , Animales , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Humanos , Túbulos Renales Colectores/metabolismo , Túbulos Renales Distales/metabolismo , Ratones , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Natriuresis , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Sodio/metabolismo
10.
Pharmacology ; 107(5-6): 250-262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35417907

RESUMEN

INTRODUCTION: Mulberry (Morus alba L.) leaves are widely used in traditional Chinese medicine for their antioxidant, anti-inflammatory, antibacterial, anti-obesity, antidiabetic, antiatherosclerotic, and anticancer properties. The current study aimed to investigate the effect of mulberry leaf extract (MLE) on Staphylococcus aureus (S. aureus)-induced conjunctivitis (5 × 109 colony-forming units, 0.5 mL/eye) in a rabbit model. METHODS: Rabbits were treated with MLE (5 mL/kg·d-1 and 10 mL/kg·d-1), 0.9% saline, pearl bright eye (PBE) drops, or erythromycin eye ointment (EEO) group for 5 days. The ocular infection symptoms, bacterial negative conversion rate, and conjunctival histopathological changes of rabbits in each group were observed. The expression of caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain, NOD-like receptor leucine-rich pyrin domain-containing protein 3 (NLRP3), interleukin (IL)-18, IL-6, IL-1ß, TNFα, Keap1, and nuclear factor erythroid 2-related factor 2 (Nrf2) in conjunctival tissue of rabbits were detected by quantitative real-time reverse transcription PCR and/or Western blot analysis. RESULTS: The results showed that MLE treatment significantly reduced the clinical sign scores of conjunctivitis, alleviated clinical signs, and decreased bacterial load, and histological damage in a time- and dose-dependent manner was compared to that in the control group. The antibacterial and anti-inflammatory activities of MLE (10 mL/kg·d-1) were similar to those of the positive control drug PBE and EEO. In addition, MLE significantly decreased the levels of pro-inflammatory cytokines, downregulated the NLRP3 inflammasome, and upregulated the Nrf2 system. CONCLUSIONS: MLE is effective in alleviating S. aureus-induced conjunctivitis in rabbits, and this mechanism is associated with the inhibition of the NLRP3 inflammasome and activation of the Nrf2 system to regulate pro-inflammatory signaling.


Asunto(s)
Conjuntivitis , Morus , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Conjuntivitis/tratamiento farmacológico , Citocinas/metabolismo , Regulación hacia Abajo , Inflamasomas , Interleucina-1beta/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Conejos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/metabolismo , Regulación hacia Arriba
11.
Water Sci Technol ; 85(8): 2423-2431, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35486465

RESUMEN

Aggregation is a key process for determining the environmental behavior and impact of a nanoparticle (NP). Since organophosphate esters (OPEs), which are recognized as emerging contaminants, are distributed widely in the natural aquatic environment, they may contribute to interacting with NPs and ultimately influence their transport and fate. Here, we investigated two typical organophosphate esters OPEs on aggregation the Fe2O3 NP in aquatic environments. The results showed that both tri-ethylhexyl phosphate (TEHP) and tris (chloroisopropyl) phosphate (TCPP) improved the colloidal stability of Fe2O3 NP in artificial water and environmental matrices. TEHP exhibited an obvious effect than TCPP on the Zeta potential and aggregation rates of Fe2O3 NP in artificial water. In the presence of electrolyte, 10 mg/L TCPP and TEHP increased the critical coagulation concentration (CCC) by 3.6 times and 17.4 times, respectively. Compared with pore-water, the aggregation rates of Fe2O3 NP in river water were slightly higher than those in pore-water, which can be attributed to the higher DOC in pore-water. We suggested that the high hydrophobicity and molecular weight of OPEs were considered important factors against the aggregation of Fe2O3 NP in water. Greater surface charge and steric hindrance originating from TCPP and TEHP dominated the colloidal stability of Fe2O3 NP.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Ésteres , Organofosfatos , Fosfatos , Agua , Contaminantes Químicos del Agua/análisis
12.
J Am Soc Nephrol ; 33(3): 584-600, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064051

RESUMEN

BACKGROUND: Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) gene cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine (K) Kinase 4 (WNK4), inappropriately activating sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK), which then phosphorylates and hyperactivates the Na+Cl- cotransporter (NCC). The precise mechanism by which CUL3-Δ9 causes FHHt is unclear. We tested the hypothesis that reduced abundance of CUL3 and of Kelch-like 3 (KLHL3), the CUL3 substrate adaptor for WNK4, is mechanistically important. Because JAB1, an enzyme that inhibits CUL3 activity by removing the ubiquitin-like protein NEDD8, cannot interact with CUL3-Δ9, we also determined whether Jab1 disruption mimicked the effects of CUL3-Δ9 expression. METHODS: We used an inducible renal tubule-specific system to generate several mouse models expressing CUL3-Δ9, mice heterozygous for both CUL3 and KLHL3 (Cul3+/-/Klhl3+/- ), and mice with short-term Jab1 disruption (to avoid renal injury associated with long-term disruption). RESULTS: Renal KLHL3 was higher in Cul3-/- mice, but lower in Cul3-/-/Δ9 mice and in the Cul3+/-/Δ9 FHHt model, suggesting KLHL3 is a target for both WT and mutant CUL3. Cul3+/-/Klhl3+/- mice displayed increased WNK4-SPAK activation and phospho-NCC abundance and an FHHt-like phenotype with increased plasma [K+] and salt-sensitive blood pressure. Short-term Jab1 disruption in mice lowered the abundance of CUL3 and KLHL3 and increased the abundance of WNK4 and phospho-NCC. CONCLUSIONS: Jab1-/- mice and Cul3+/-/Klhl3+/- mice recapitulated the effects of CUL3-Δ9 expression on WNK4-SPAK-NCC. Our data suggest degradation of both KLHL3 and CUL3 plays a central mechanistic role in CUL3-Δ9-mediated FHHt.


Asunto(s)
Proteínas Cullin , Hipertensión , Seudohipoaldosteronismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Femenino , Humanos , Hipertensión/genética , Masculino , Ratones , Proteínas de Microfilamentos/genética , Proteínas Serina-Treonina Quinasas/genética , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo
13.
New Phytol ; 233(3): 1289-1302, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761375

RESUMEN

During plant-pathogenic fungi and host plants interactions, numerous pathogen-derived proteins are secreted resulting in the activation of the unfolded protein response (UPR) pathway. For efficient trafficking of secretory proteins, including those important in disease progression, the cytoplasmic coat protein complex II (COPII) exhibits a multifunctional role whose elucidation remains limited. Here, we discovered that the COPII cargo receptor MoErv29 functions as a target of MoHac1, a previously identified transcription factor of the UPR pathway. In Magnaporthe oryzae, deletion of MoERV29 severely affected the vegetative growth, conidiation and biotrophic invasion of the fungus in susceptible rice hosts. We demonstrated that MoErv29 is required for the delivery of secreted proteins through recognition and binding of the amino-terminal tripeptide motifs following the signal peptide. By using bioinformatics analysis, we predicted a cargo spectrum of MoErv29 and found that MoErv29 is required for the secretion of many proteins, including extracellular laccases and apoplastic effectors. This secretion is mediated through the conventional endoplasmic reticulum-Golgi secretion pathway and is important for conferring host recognition and disease resistance. Taken together, our results revealed how MoErv29 operates on effector secretion, and our findings provided a critical link between COPII vesicle trafficking and the UPR pathway.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Virulencia
14.
Animals (Basel) ; 11(12)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34944244

RESUMEN

Actin Alpha Cardiac Muscle 1 (ACTC1) gene is a differentially expressed gene screened through the co-culture system of myoblasts-preadipocytes. In order to study the role of this gene in the process of proliferation and differentiation of bovine myoblasts and preadipocytes, the methods of the knockdown, overexpression, and ectopic expression of ACTC1 were used in this study. After ACTC1 knockdown in bovine myoblasts and inducing differentiation, the sizes and numbers of myotube formation were significantly reduced compared to the control group, and myogenic marker genes-MYOD1, MYOG, MYH3, MRF4, MYF5, CKM and MEF2A-were significantly decreased (p < 0.05, p < 0.01) at both the mRNA and protein levels of myoblasts at different differentiation stages (D0, D2, D4, D6 and D8). Conversely, ACTC1 overexpression induced the inverse result. After ectopic expression of ACTC1 in bovine preadipocytes and induced differentiation, the number and size of lipid droplets were significantly higher than those of the control group, and the expression of adipogenic marker genes-FABP4, SCD1, PPARγ and FASN-were significantly increased (p < 0.05, p < 0.01) at the mRNA and protein levels of preadipocytes at different differentiation stages. Flow cytometry results showed that both the knockdown and overexpression of ACTC1 inhibited the normal cell cycle of myoblasts; however, ectopic expression of ACTC1 in adipocytes induced no significant cell cycle changes. This study is the first to explore the role of ACTC1 in bovine myogenesis and lipogenesis and demonstrates that ACTC1 promotes the differentiation of bovine myoblasts and preadipocytes, affecting the proliferation of myoblasts.

15.
J Am Soc Nephrol ; 32(9): 2195-2209, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34230103

RESUMEN

BACKGROUND: Urinary extracellular vesicles (uEVs) are secreted into urine by cells from the kidneys and urinary tract. Although changes in uEV proteins are used for quantitative assessment of protein levels in the kidney or biomarker discovery, whether they faithfully reflect (patho)physiologic changes in the kidney is a matter of debate. METHODS: Mass spectrometry was used to compare in an unbiased manner the correlations between protein levels in uEVs and kidney tissue from the same animal. Studies were performed on rats fed a normal or high K+ diet. RESULTS: Absolute quantification determined a positive correlation (Pearson R=0.46 or 0.45, control or high K+ respectively, P<0.0001) between the approximately 1000 proteins identified in uEVs and corresponding kidney tissue. Transmembrane proteins had greater positive correlations relative to cytoplasmic proteins. Proteins with high correlations (R>0.9), included exosome markers Tsg101 and Alix. Relative quantification highlighted a monotonic relationship between altered transporter/channel abundances in uEVs and the kidney after dietary K+ manipulation. Analysis of genetic mouse models also revealed correlations between uEVs and kidney. CONCLUSION: This large-scale unbiased analysis identifies uEV proteins that track the abundance of the parent proteins in the kidney. The data form a novel resource for the kidney community and support the reliability of using uEV protein changes to monitor specific physiologic responses and disease mechanisms.


Asunto(s)
Vesículas Extracelulares/metabolismo , Riñón/metabolismo , Proteoma , Orina/citología , Animales , Masculino , Espectrometría de Masas , Ratones , Ratas , Ratas Wistar , Reproducibilidad de los Resultados
16.
Chemosphere ; 280: 130743, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33975235

RESUMEN

Thallium (Tl) commonly occurs in shallow groundwater affected by acid mine drainage (AMD); however, our knowledge of the occurrence of Tl in shallow groundwater is limited. This study observes that the shallow groundwater in an AMD-impacted area in Southern China contains an elevated Tl concentration (22 µg/L) under the oxidizing conditions and a low Tl concentration (<1 µg/L) in the reducing environment. The groundwater Tl concentration is positively correlated with oxidation-reduction potential (Eh) and negatively correlated with Cl content. The modelling results of the Tl species demonstrate that Tl+, TlSO4-, TlCl, and TlNO3 are the main forms of Tl in groundwater. Tl may precipitate as Tl(OH)3 under weakly acidic to alkaline conditions. Drill-core analysis of wells indicates that the Tl content in the vadose zone is equal to the background soil Tl content under oxidizing conditions. However, under artificial reducing conditions, the Tl content at the 3-4 m depth below the groundwater level ranges from 1.6 to 3.5 µg/g. This finding demonstrates that Tl solute in groundwater migrates into the aquifer when redox conditions change. Mn-oxides and illite in the weak permeable aquifer are the key minerals for Tl adsorption; some major sites of illite start to uptake Tl from pH 8.0. This study highlights not only the geochemical distribution of Tl in groundwater but also the influences of changes in redox conditions caused by human activities on Tl enrichment in groundwater. Enhancing our understanding of the aqueous geochemistry of Tl is of significance for the prevention and control of Tl pollution.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Humanos , Minería , Suelo , Talio/análisis , Contaminantes Químicos del Agua/análisis
17.
Animals (Basel) ; 11(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375362

RESUMEN

In this study, we successfully established a co-culture system of bovine preadipocytes and myoblasts to explore the effect of exogenous addition of Neudesin neurotrophic factor (NENF) recombinant protein on the differentiation of adipocytes and myoblasts in co-culture. The optimal concentration of NENF recombinant protein was 100 pg/mL. NENF promoted the differentiation of bovine preadipocytes and inhibited the differentiation of bovine myoblasts when the cells were cultured separately. After adding NENF recombinant protein to the co-culture system, the accumulation of lipid droplets in bovine preadipocytes decreased, but the differentiation of bovine myoblasts did not change significantly. The results of real-time quantitative PCR (RT-qPCR) and Western blot showed that the expression levels of adipogenesis-related factors such as PPARγ, FABP4 and FASN were significantly down-regulated at the mRNA and protein levels in adipocytes, while myogenic marker genes such as MYOD1, MYOG and MYHC had no significant changes at the mRNA or protein levels in myoblasts. This differs from, and potentially conflicts with, the monoculture system, where NENF expression in each cell type changed with the cell microenvironment. Consequently, the molecular mechanism of marbling beef formation cannot be fully revealed using monocultures of adipocytes or myocytes.

18.
Int Immunopharmacol ; 89(Pt A): 107027, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33039957

RESUMEN

FoxO3a plays key roles in inflammation and autoimmunity, and the PI3K-Akt-FoxO3a pathway has been proposed to modulate diverse biological processes. The aim of the present study, using lupus murine models, was to investigate whether FoxO3a contributes to the pathogenesis of lupus nephritis. LY294002 was used as an inhibitor of PI3K/AKT signaling pathway. FoxO3a-targeted small interfering RNA (siRNA) was also used for in vivo intervention. Female MRL/lpr mice were separately injected with LY294002, LY294002+siFoxO3a, and LY294002+siControl for 8 weeks. C57BL/6 mice were normal controls. Disease development, including serum creatinine (CRE), blood urea nitrogen (BUN), proteinuria, and renal pathological changes, was monitored. Levels of anti-dsDNA antibodies and immune complex (IC) deposition in the kidney were also measured. The expression of proteins was evaluated. We found that significant downregulation of FoxO3a was detected in the kidney of MRL/lpr mice as compared with normal control mice. Blockade of p-FoxO3a activation by LY294002 suppressed PI3K/Akt/FoxO3a pathway and the subsequent upregulation of FoxO3a in the nucleus resulting in the severity of inflammation and fibrosis in the kidney of MRL/lpr mice. Also, improved kidney function and decreased circulating anti-dsDNA antibodies were due to the upregulation of FoxO3a. Opposite results were obtained by specific siRNA silencing of Foxo3a in vivo. In conclusion, our research demonstrated that the upregulation of FoxO3a expression through inhibiting PI3K/Akt pathway attenuates murine lupus nephritis (LN). Thus, our results suggest that targeting of FoxO3a can be considered as a novel strategy for the treatment of LN.


Asunto(s)
Cromonas/farmacología , Proteína Forkhead Box O3/metabolismo , Riñón/efectos de los fármacos , Nefritis Lúpica/prevención & control , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Anticuerpos Antinucleares/sangre , Complejo Antígeno-Anticuerpo/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Fibrosis , Proteína Forkhead Box O3/genética , Riñón/enzimología , Riñón/patología , Nefritis Lúpica/enzimología , Nefritis Lúpica/genética , Nefritis Lúpica/patología , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Regulación hacia Arriba
19.
Curr Cardiol Rep ; 22(10): 124, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32789612

RESUMEN

Eating more potassium may reduce blood pressure and the occurrence of other cardiovascular diseases by actions on various systems, including the vasculature, the sympathetic nervous system, systemic metabolism, and body fluid volume. Among these, the kidney plays a major role in the potassium-rich diet-mediated blood pressure reduction. PURPOSE OF REVIEW: To provide an overview of recent discoveries about the mechanisms by which a potassium-rich diet leads to natriuresis. RECENT FINDINGS: Although the distal convoluted tubule (DCT) is a short part of the nephron that reabsorbs salt, via the sodium-chloride cotransporter (NCC), it is highly sensitive to changes in plasma potassium concentration. Activation or inhibition of NCC raises or lowers blood pressure. Recent work suggests that extracellular potassium concentration is sensed by the DCT via intracellular chloride concentration which regulates WNK kinases in the DCT. High-potassium diet targets NCC in the DCT, resulting in natriuresis and fluid volume reduction, which are protective from hypertension and other cardiovascular problems.


Asunto(s)
Túbulos Renales Distales , Potasio en la Dieta , Presión Sanguínea , Humanos , Natriuresis , Miembro 3 de la Familia de Transportadores de Soluto 12
20.
Am J Physiol Renal Physiol ; 319(3): F423-F435, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32657158

RESUMEN

Cre-lox technology has revolutionized research in renal physiology by allowing site-specific genetic recombination in individual nephron segments. The distal convoluted tubule (DCT), consisting of distinct early (DCT1) and late (DCT2) segments, plays a central role in Na+ and K+ homeostasis. The only established Cre line targeting the DCT is Pvalb-Cre, which is limited by noninducibility, activity along DCT1 only, and activity in neurons. Here, we report the characterization of the first Cre line specific to the entire DCT. CRISPR/Cas9 targeting was used to introduce a tamoxifen-inducible IRES-Cre-ERT2 cassette downstream of the coding region of the Slc12a3 gene encoding the NaCl cotransporter (NCC). The resulting Slc12a3-Cre-ERT2 mice were crossed with R26R-YFP reporter mice, which revealed minimal leakiness with 6.3% of NCC-positive cells expressing yellow fluorescent protein (YFP) in the absence of tamoxifen. After tamoxifen injection, YFP expression was observed in 91.2% of NCC-positive cells and only in NCC-positive cells, revealing high recombination efficiency and DCT specificity. Crossing to R26R-TdTomato mice revealed higher leakiness (64.5%), suggesting differential sensitivity of the floxed site. Western blot analysis revealed no differences in abundances of total NCC or the active phosphorylated form of NCC in Slc12a3-Cre-ERT2 mice of either sex compared with controls. Plasma K+ and Mg2+ concentrations and thiazide-sensitive Na+ and K+ excretion did not differ in Slc12a3-Cre-ERT2 mice compared with controls when sex matched. These data suggest genetic modification had no obvious effect on NCC function. Slc12a3-Cre-ERT2 mice are the first line generated demonstrating inducible Cre recombinase activity along the entire DCT and will be a useful tool to study DCT function.


Asunto(s)
Túbulos Renales Distales/enzimología , Recombinasas/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Animales , Antagonistas de Estrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Recombinasas/genética , Simportadores del Cloruro de Sodio/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...